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LETTER TO THE EDITOR 

Chaos in a limit-cycle system with almost periodic excitation 

Tomasz Kapitaniak and Jerzy Wojewoda 
Institute of Applied Mechanics, Technical University o f  Lodz, Stefanowskiego 1/ 15,90-924 
Lodz. Poland 

Received 21 February 1988 

Abstract. The influence of the almost periodic excitation on the chaotic behaviour of Van 
der Pol's oscillator is reported. 

Recently systems with chaotic behaviour have attracted increasing attention [ 1 -101. 
Several examples of chaotic solutions have also been found for limit-cycle systems, 
which appear in the mathematical analysis of many phenomena (lasers, the biochemical 
oscillator, many engineering problems and in particular the mechanical system with 
dry friction [8-lo]). The best known example is Van der Pol's oscillator 

(1) 

In  the present letter we study the above limit-cycle system under the influence of 

x+ d(x2 - l)X+X" = 0 
which serves as a basic model of self-excited oscillations. 

an almost periodic external excitation 

U cos(wt) cos(Rt) (2) 
where U, R and w are constant, R and w being incommensurate. 

In  the case of w = 0 we obtain the typical system with periodic excitation, which 
was investigated by various authors [8-lo]. Particularly for n = 1 the chaotic behaviour 
has been found by Parlitz and Lauterborn [lo] for the following values of system 
parameters: 

a = d = 5.0 w E [2.463,2.466]. 

We try to answer the question: what happens when the excitation is almost periodic? 
Some experiments with almost periodic excitation have been already done. For example 
in [ l l ]  the authors consider the transmission to chaos in an electronic Josephson- 
junction simulator driven by two independent AC sources. The influence of the two 
external periodic excitations on the chaotic behaviour of an anharmonic oscillator has 
been investigated in [12-141 and on the non-linear pendulum in [15]. 

For characterising the chaotic behaviour we consider Lorenz plots (recursive plots 
of x in the (x[n], x[n + 13) plane, where x[n] ( n  = 1,2, .  . .) is the extremum of the 
oscillation waveform), power spectra and maximum Lyapunov exponents. We consider 
R = 2.464 and w E [0,2.464]. All the numerical simulations are done using the modified 
Runge-Kutta method of the fourth order. The calculation step is ?r/100R. The FFT 

procedure is used for power spectra. 
The evolution of the strange attractor depending on w is described by means of 

the Lorenz plots and power spectra of figure 1. 
In  figure l ( a )  we have the strange attractor for w = 0. Chaotic behaviour is observed 

in figures l(b,  c )  up to w = 1.0 but the structure of the attractor becomes simpler with 
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Figure 1. Lorenz plots of x [ n +  I ]  against x [ n ]  and power spectra of the system ( 1 )  with 
excitation (2)  with parameters a = d = 5.0; R = 2.464 for (a)  w = 0.0, ( b )  0.244, (c)  0.601, 
( d )  1.173, ( e )  1.232, U) 1.236, ( 9 )  1.4, ( h )  1.6, ( i )  1.8, (i) 1.848, (k) 1.9, ( 1 )  2.4. 
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Figure 1. (continued) 
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Figure 2. Diagram of frequency behaviour in the neighbourhood of ( a )  w / n = i  and 
( b )  w/n=:. 

Table I .  Positive maximum Lyapunov exponent for different values of w .  

w a m r r  

0.0 0.22 
0.244 0.13 
0.601 0.03 
1.26 0.08 
2.4 0.06 

increasing w. One of the simplest attractor structures is observed for w = 1.23 15 where 
the Lorenz plot consists of six points and fourteen frequencies are visible in the power 
spectra (see figure l (e ) ) .  In  the close neighbourhood of w = 1.232 for lower values of 
w we observe trifurcation of each of the frequencies in figure l ( e )  (compare figures 
l ( e )  and l ( d ) )  as diagrammatically shown in figure 2(a).  This trifurcation is not visible 
for higher values of w where, for example for w = 1.236, the behaviour of the system 
is again chaotic (see figure l ( f ) ) .  The chaotic behaviour is lost for the second time 
for w = 1.4. For this value of w we have almost periodic behaviour of the very 
complicated form (the so-called non-chaotic strange attractor [ 151) shown in figure 
l (g) .  With further increase of the value of w the structure of the attractor becomes 
simpler as in figures l ( h - j ) .  The mechanism of this simplification for the main 
frequencies is shown in figure 2(b).  The same trifurcation is also visible for w > 1.847 
(compare figures l ( j )  and  l ( k ) ) .  For larger values of w the attractor becomes more 
complicated and  chaotic behaviour is again observed in the neighbourhood of w = 2.4 
in figure l(1). The values of positive maximum Lyapunov exponents for the w values 
of figure 1 are presented in table 1. To summarise the results presented above we 
found that the chaotic behaviour is weakened by the existence of the second frequency 
in the formula describing the excitation force. This weakening for Van der Pol’s 
equation is even stronger than in the case of Duffing’s equation [13]. It is interesting 
that the simplest shape of attractor is obtained for the same ratio of w / n = ;  and 
w / n  = i, for which Duffing oscillators, excited in the same form, lose chaotic properties 
[13]. We hope to explain this problem in future work. 
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